گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

اگر $x= \sqrt{3} + \sqrt{5}$ حاصل $x^4-16x^2$ کدام است؟

1 ) 

$-2$

2 ) 

$2$

3 ) 

$-4$

4 ) 

$4$

پاسخ تشریحی :
نمایش پاسخ

نکته: $(a+b)^2=a^2+2ab+b^2$

راه حل اول:

 $x=\sqrt{3}+\sqrt{5}\,\Rightarrow {{x}^{2}}=3+5+2\sqrt{15}\Rightarrow {{x}^{2}}=8+2\sqrt{15}$

${{x}^{4}}={{({{x}^{2}})}^{2}}={{(8+2\sqrt{15})}^{2}}=64+4\times 15+32\sqrt{15}\,\Rightarrow {{x}^{4}}=124+32\sqrt{15}$

$-16{{x}^{2}}=-16(8+2\sqrt{15})=-128-32\sqrt{15}$

بنابراین:

 ${{x}^{4}}-16{{x}^{2}}=124+32\sqrt{5}-128-32\sqrt{15}=-4$

راه حل دوم:

نکته: $(a+b)(a-b)=a^2-b^2$

$x=\sqrt{3}+\sqrt{5}\,\Rightarrow {{x}^{2}}=8+2\sqrt{15}$

${{x}^{4}}-16{{x}^{3}}={{x}^{2}}({{x}^{2}}-16)=(2\sqrt{15}+8)(2\sqrt{15}-8)={{(2\sqrt{15})}^{2}}-{{8}^{2}}=60-64=-4$

تحلیل ویدئویی تست

حیدر میرلطیفی