$A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
4
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
2 \\
{ - 3}
\end{array}} \right] \Rightarrow {A^{ - 1}} = \frac{1}{{ - 5}}\left[ {\begin{array}{*{20}{c}}
{ - 3} \\
{ - 4}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\frac{3}{5}} \\
{\frac{4}{5}}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{\frac{2}{5}} \\
{\frac{1}{5}}
\end{array}} \right]$
$\alpha A + \beta I = {A^{ - 1}} \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - \alpha } \\
{4\alpha }
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{2\alpha } \\
{ - 3\alpha }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
\beta \\
0
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
0 \\
\beta
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\frac{3}{5}} \\
{\frac{4}{5}}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{\frac{2}{5}} \\
{\frac{1}{5}}
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - \alpha + \beta } \\
{4\alpha }
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{2\alpha } \\
{ - 3\alpha + \beta }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\frac{3}{5}} \\
{\frac{4}{5}}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{\frac{2}{5}} \\
{\frac{1}{5}}
\end{array}} \right]$
$ \Rightarrow \left\{ \begin{gathered}
2\alpha = \frac{2}{5} \Rightarrow \alpha = \frac{1}{5} \hfill \\
- \alpha + \beta = \frac{3}{5} \Rightarrow - \frac{1}{5} + \beta = \frac{3}{5} \Rightarrow \beta = \frac{4}{5} \hfill \\
\end{gathered} \right\} \Rightarrow \frac{\beta }{\alpha } = 4$