با توجه به رابطهی ${{\beta }_{1}}-{{\beta }_{2}}=10\log \frac{{{I}_{1}}}{{{I}_{2}}}$ میتوان نوشت:
${{\beta }_{1}}-{{\beta }_{2}}=10\log \frac{{{I}_{1}}}{{{I}_{2}}}\xrightarrow{\frac{{{I}_{1}}}{{{I}_{2}}}={{(\frac{{{d}_{2}}}{{{d}_{1}}})}^{2}}}{{\beta }_{1}}-{{\beta }_{2}}=10\log {{(\frac{{{d}_{2}}}{{{d}_{1}}})}^{2}}\Rightarrow 17-5=10\log {{(\frac{{{d}_{2}}}{{{d}_{1}}})}^{2}}$
$\Rightarrow 1/2=\log {{(\frac{{{d}_{2}}}{{{d}_{1}}})}^{2}}\Rightarrow \log {{2}^{4}}=\log {{(\frac{{{d}_{2}}}{{{d}_{1}}})}^{2}}\Rightarrow {{2}^{4}}={{(\frac{{{d}_{2}}}{{{d}_{1}}})}^{2}}$
$\Rightarrow \frac{{{d}_{2}}}{{{d}_{1}}}=4\xrightarrow{{{d}_{1}}=4m}{{d}_{2}}=4\times 4=16m\Rightarrow \Delta d=16-4=12m$
دقت کنید: تبدیل $1/2$ به عدد لگاریتمی:
$1/2=4\times 0/3=4\log 2=\log {{2}^{4}}$