نقطه $(0,\alpha )$ روی این منحنی است $ \leftarrow $ خواسته سوال $y = {g^{ - 1}}o{f^{ - 1}}(x)$ است.
${f^{ - 1}}(0) \to f(b) = 0 \to \log (2b - 5) = 0 \to 2 - 5 = 1 \to b = 3$
${g^{ - 1}}(3) = \alpha \to g(\alpha ) = 3 \to \alpha + \sqrt {2\alpha - 4} = 3 \to \sqrt {2\alpha - 4} = 3 - \alpha \to $
$\left. \begin{gathered}
3 - \alpha \geqslant 0 \hfill \\
2\alpha - 4 \geqslant 0 \hfill \\
\end{gathered} \right\}2 \leqslant \alpha \leqslant 3$
$2\alpha - 4 = 9 - 6\alpha + {\alpha ^2} \to {\alpha ^2} - 8\alpha + 13 = 0 \to \alpha = 4 \pm \sqrt 3 $
$\alpha lt 3 \to \alpha = 4 - \sqrt 3 $