نسبت به سطر دوم دترمینان میگیریم:
$\left| A \right|=\left[ \begin{matrix}
-1 & 2 & 3 \\
\overset{-}{\mathop{\left| A \right|}}\, & \overset{+}{\mathop{0}}\, & \overset{\_}{\mathop{-1}}\, \\
3 & 2\left| A \right| & 1 \\
\end{matrix} \right]=-\left| A \right|\left| \begin{matrix}
2 & 3 \\
2\left| A \right| & 1 \\
\end{matrix} \right|+\left| \begin{matrix}
-1 & 2 \\
3 & 2\left| A \right| \\
\end{matrix} \right|$
بنابراین:
$\begin{align}
& \left| A \right|=-\left| A \right|(2-6\left| A \right|)+(-2\left| A \right|-6) \\
& \Rightarrow \left| A \right|=6{{\left| A \right|}^{2}}-2\left| A \right|-2\left| A \right|-6 \\
& \Rightarrow 6{{\left| A \right|}^{2}}-5\left| A \right|-6=0\Rightarrow (3\left| A \right|+2)(2\left| A \right|-3)=0 \\
\end{align}$
پس:
$\left\{ \begin{matrix}
\left| A \right|=-\frac{2}{3} \\
\left| A \right|=\frac{3}{2} \\
\end{matrix} \right.$