مطابق شکل داده شده میتوان نوشت:
محیط استادیوم $ = 2y + \frac{{\pi x}}{2} \times 2 = 2y + 3x = 120 \Rightarrow y = 60 - \frac{{3x}}{2}$
مساحت استادیوم $ = \pi {(\frac{x}{2})^2} + xy = \frac{{3{x^2}}}{4} + xy = 900$
را جایگزین میکنیم y
$\frac{{3{x^2}}}{4} + x(60 - \frac{{3x}}{2}) = 900 \Rightarrow \frac{{3{x^2}}}{4} + 60x - \frac{{3{x^2}}}{2} = 900$
$3{x^2} + 240x - 6{x^2} = 3600 \Rightarrow 3{x^2} - 240x + 3600 = 0$
${x^2} - 80x + 1200 = 0$
$\Delta = {( - 80)^2} - 4(1)(1200) = 6400 - 4800 = 1600$
$x = \frac{{ - ( - 80) \pm \sqrt {1600} }}{{2(1)}} = \frac{{80 \pm 40}}{2}$
$ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{{x_1} = \frac{{80 + 40}}{2} = \frac{{120}}{2} = 60 \Rightarrow {y_1} = 60 - \frac{{180}}{2} = - 30}\\
{{x_2} = \frac{{80 - 40}}{2} = \frac{{40}}{2} = 20 \Rightarrow {y_2} = 60 - \frac{{60}}{2} = 30\,\,\,\,\,\,\,}
\end{array}} \right.$
مساحت مستطیل $ = 20 \times 30 = 600$