$\frac{x}{y}+\frac{y}{x}=-2\Rightarrow \frac{{{x}^{2}}+{{y}^{2}}}{xy}=-2\Rightarrow {{x}^{2}}+{{y}^{2}}+2xy=0\Rightarrow {{(x+y)}^{2}}=0$
در نتیجه: $x+y=0\Rightarrow y=-x\,\,\,\,\,\,\,\,\,\,\,\,\,x\ne 0\,\,\,\,,\,\,\,\,y\ne 0$ 
بنابراین y تابعی از x است.
$\left\{ \begin{matrix}
   y+2y+3=x\,\,\,\,\,\,\,\,\,y\ge -\frac{3}{2}  \\
   y-2y-3=x\,\,\,\,\,\,\,\,\,y<-\frac{3}{2}  \\
\end{matrix}\Rightarrow \left\{ \begin{matrix}
   y=\frac{1}{3}x-1\,\,\,\,\,\,y\ge -\frac{3}{2}  \\
   y=-x-3\,\,\,\,\,\,y\lt -\frac{3}{2}  \\
\end{matrix} \right. \right.$ 
$x=0\Rightarrow \left\{ \begin{matrix}
   y=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y\ge -\frac{3}{2}\,\,Tabe\,Nist  \\
   y=-3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y<-\frac{3}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,  \\
\end{matrix} \right.$ 
$\left\{ \begin{matrix}
   x+\sqrt{y+4}=y+2  \\
   x=-2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,  \\
\end{matrix}\Rightarrow -2+\sqrt{y+4}=y+2\Rightarrow \sqrt{y+4}=y+4 \right.$
در این صورت:
$\begin{align}
  & y+4=0\Rightarrow y=-4\,Tabe\,Nist \\ 
 & y+4=1\Rightarrow y=-3 \\ 
 & y+x=y+3\Rightarrow x=3\,Tabe\,Nist \\ 
\end{align}$