گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

چندضلعی منظم: چندضلعی که تمام اضلاع و زوایای آن با هم برابر باشند.

بروزرسانی شده در: 11:14 1404/09/5 مشاهده: 2     دسته بندی: کپسول آموزشی

چندضلعی‌های منظم: اشکال هندسی کامل

کشف دنیای شگفت‌انگیز شکل‌هایی که همه‌ی اضلاع و زوایایشان با هم برابر است.
در این مقاله با چندضلعی‌های منظم آشنا می‌شویم؛ شکل‌های هندسی زیبا و متقارنی که در طبیعت و زندگی روزمره‌مان بسیار دیده می‌شوند. ما ویژگی‌های اصلی این شکل‌ها مانند تعداد اضلاع، اندازه‌ی زاویه‌های داخلی و محیط را بررسی کرده و با ارائه‌ی مثال‌های ملموس و جدول‌های طبقه‌بندی شده، درک این مفهوم ریاضی را برای شما آسان می‌کنیم.

چندضلعی منظم چیست؟

یک چندضلعی1، شکل‌ای مسطح و بسته است که با اتصال چند پاره‌خط به وجود می‌آید. وقتی همه‌ی آن پاره‌خط‌ها (یعنی اضلاع) و همچنین همه‌ی زوایای داخلی با هم برابر باشند، به آن شکل یک چندضلعی منظم می‌گوییم. به زبان ساده‌تر، این شکل‌ها کاملاً متقارن و منظم هستند. ساده‌ترین چندضلعی منظم، مثلث متساوی‌الاضلاع است. یک کاشی مربعی کامل نیز نمونه‌ای از یک چندضلعی منظم (چهارضلعی منتظم) است.

فرمول محاسبه‌ی هر زاویه‌ی داخلی: برای محاسبه‌ی اندازه‌ی هر یک از زاویه‌های داخلی یک چندضلعی منظم از این فرمول استفاده می‌کنیم: $ \frac{(n - 2) \times 180^\circ}{n} $ که در آن، n نشان‌دهنده‌ی تعداد اضلاع است.

انواع چندضلعی‌های منظم و ویژگی‌های آنها

چندضلعی‌های منظم بر اساس تعداد اضلاعشان نام‌گذاری می‌شوند. در جدول زیر می‌توانید برخی از معروف‌ترین آن‌ها را ببینید:

نام شکل تعداد اضلاع (n) اندازه‌ی هر زاویه‌ی داخلی مثال‌هایی از محیط زندگی
مثلث متساوی‌الاضلاع 3 60° بعضی از علائم راهنمایی و رانندگی، تکیه‌گاه سه‌پایه
مربع 4 90° کاشی‌های کف، پنجره‌های معمولی، قاب عکس
پنج‌ضلعی منتظم 5 108° خانه‌ی توپ فوتبال، شکل برخی گل‌ها
شش‌ضلعی منتظم 6 120° لانه‌ی زنبور عسل، طراحی برخی موزاییک‌ها
هشت‌ضلعی منتظم 8 135° علامت STOP، طراحی برخی حوض‌های قدیمی

کاربرد چندضلعی‌های منظم در دنیای اطراف ما

این شکل‌های منظم فقط در کتاب‌های ریاضی نیستند! آن‌ها همه‌جا هستند. وقتی به لانه‌ی زنبور عسل نگاه می‌کنی، می‌بینی که از تعداد زیادی شش‌ضلعی منتظم ساخته شده است. چرا؟ چون این شکل بهترین استفاده از فضا را می‌کند و در عین حال برای ساخت به کمترین مواد نیاز دارد. توپ فوتبال سنتی از ترکیب پنج‌ضلعی‌ها و شش‌ضلعی‌های سفید و سیاه ساخته می‌شود. حتی در طراحی و ساخت بسیاری از میزها، کاشی‌های حمام و آشپزخانه، و حتی جواهرات از این شکل‌های منظم و زیبا استفاده می‌شود.

اشتباهات رایج و پرسش‌های مهم

آیا هر مربعی یک چندضلعی منظم است؟

بله، دقیقاً! مربع شرایط یک چندضلعی منظم را دارد: چهار ضلع دارد که همه با هم برابرند و همچنین چهار زاویه دارد که هر کدام 90 درجه هستند. بنابراین مربع یک «چهارضلعی منتظم» است.

آیا یک لوزی، چندضلعی منظم محسوب می‌شود؟

خیر. در یک لوزی همه‌ی اضلاع با هم برابرند، اما زوایای آن لزوماً برابر نیستند (دو زاویه‌ی تند و دو زاویه‌ی باز). از آنجایی که شرط برابری همه‌ی زوایا برقرار نیست، لوزی یک چندضلعی نامنظم است.

چگونه محیط یک چندضلعی منظم را حساب کنیم؟

محیط یعنی مجموع طول همه‌ی اضلاع. از آنجایی که در یک چندضلعی منظم همه‌ی اضلاع برابرند، کافی است طول یک ضلع را در تعداد اضلاع (n) ضرب کنیم. اگر طول یک ضلع را با s نشان دهیم، فرمول محیط به این صورت است: $ P = n \times s $

جمع‌بندی: چندضلعی‌های منظم، شکل‌های هندسی بسیار منظم و متقارنی هستند که همه‌ی اضلاع و زوایای داخلی آن‌ها با هم برابر است. از مثلث متساوی‌الاضلاع گرفته تا مربع و شش‌ضلعی‌های لانه‌ی زنبور، این شکل‌ها هم در ریاضیات و هم در طبیعت و زندگی روزمره‌ی ما حضور پررنگی دارند. با دانستن تعداد اضلاع (n) می‌توانیم اندازه‌ی هر زاویه‌ی داخلی و محیط آن‌ها را به راحتی محاسبه کنیم.

پاورقی

1 چندضلعی (Polygon): به شکل‌های مسطح و بسته‌ای که از اتصال چند پاره‌خط تشکیل شده‌اند، گفته می‌شود.

هندسه اشکال هندسی محیط و مساحت تقارن زاویه داخلی