گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

خودرویی با سرعت $72\frac{km}{h}$ در حال حرکت است. راننده با دیدن مانعی در فاصله‌ی $58$ متری از خودرو با شتاب ثابت $4\frac{m}{{{s}^{2}}}$ ترمز می‌کند و درست جلوی مانع می‌ایستد. اگ زمان واکنش راننده ${{t}_{1}}$ و زمانی که حرکت خودرو کندشونده بوده ${{t}_{2}}$ باشد، نسبت $\frac{{{t}_{2}}}{{{t}_{1}}}$ کدام است؟

1 ) 

$10$

2 ) 

$12/5$

3 ) 

$15$

4 ) 

$20$

پاسخ تشریحی :
نمایش پاسخ

سرعت اولیه‌ی خودرو برحسب متر بر ثانیه برابر است با:

${{v}_{{}^\circ }}=\frac{72}{3/6}\frac{m}{s}=20\frac{m}{s}$

در مدت زمان واکنش راننده، خودرو به اندازه‌ی $\Delta {{x}_{1}}$ جابه‌جا می‌شود:

$\Delta {{x}_{1}}={{v}_{{}^\circ }}\times \Delta t\Rightarrow \Delta {{x}_{1}}=20\times {{t}_{1}}$

در مدتی که حرکت خودرو کندشونده است، جابه‌جایی خودرو برابر $\Delta {{x}_{2}}$ است:

$_{\Delta {{x}_{2}}=\frac{1}{2}at_{2}^{2}+{{v}_{{}^\circ }}{{t}_{2}}\Rightarrow \Delta {{x}_{2}}=\frac{1}{2}(-4)\times {{5}^{2}}+20\times 5\Rightarrow \Delta {{x}_{2}}=50m}^{v=at+{{v}_{{}^\circ }}\Rightarrow 0=-4{{t}_{2}}+20\Rightarrow {{t}_{2}}=5s}$

مجموع جابه‌جایی خودرو برابر $58m$ است، بنابراین داریم:

$\Delta {{x}_{1}}+\Delta {{x}_{2}}=58m\Rightarrow 20{{t}_{1}}+50=58\Rightarrow {{t}_{1}}=0/4s\Rightarrow \frac{{{t}_{2}}}{{{t}_{1}}}=\frac{5}{0/4}=12/5$

تحلیل ویدئویی تست

نسرین میری