$\frac{{\left( \begin{gathered}
n - 1 \hfill \\
k - 1 \hfill \\
\end{gathered} \right)}}{{\left( \begin{gathered}
n \hfill \\
k \hfill \\
\end{gathered} \right)}} = \frac{k}{{k + 5}}$
$\frac{{\left( {n - 1} \right)!}}{{\left( {n - k} \right)!\left( {k - 1} \right)!}} = \frac{{k!\left( {n - 1} \right)!}}{{\left( {k - 1} \right)!n!}}$
$\frac{{k\cancel{{\left( {k - 1} \right)!}}\cancel{{\left( {n - 1} \right)!}}}}{{\cancel{{\left( {k - 1} \right)!}}n\cancel{{\left( {n - 1} \right)!}}}} = \frac{k}{n}$
$\frac{k}{n} = \frac{k}{{k + 5}}$
$\boxed{k + 5 = n}$
$n + k = 2k + 5 \to \boxed9$