$\underset{x\to 1}{\mathop{\lim }}\,\,f(x)=1-3+2=0$
$\underset{x\to 1}{\mathop{\lim }}\,\,g(x)=1-1=0$
$\Rightarrow \lim \,(f+g)(x)=\underset{x\to 1}{\mathop{\lim }}\,\,f(x)+\underset{x\to 1}{\mathop{\lim }}\,\,g(x)=0+0=0$
$\underset{x\to 1}{\mathop{\lim }}\,\,(\frac{f}{g})(x)=\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{4}}-3{{x}^{2}}+2}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{({{x}^{2}}-1)({{x}^{2}}-2)}{x-1}$
$=\underset{x\to 1}{\mathop{\lim }}\,\frac{(x-1)(x+1)({{x}^{2}}-2)}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,(x+1)({{x}^{2}}-2)=2\times (-1)=-2$