$\alpha = \frac{\pi }{2}{\sin ^2}\theta \Rightarrow \tan \alpha + \cot (\frac{\pi }{2} - \alpha ) = 2\sqrt 3 \Rightarrow 2\tan \alpha = 2\sqrt 3 $
$ \Rightarrow \tan \alpha = \sqrt 3 \xrightarrow{{0 \lt \alpha \lt \frac{\pi }{2}}}\alpha = \frac{\pi }{3} \Rightarrow \frac{\pi }{2}{\sin ^2}\theta = \frac{\pi }{3} \Rightarrow {\sin ^2}\theta = \frac{2}{3}$
$ \Rightarrow {\tan ^2}\theta = 2,{\cot ^2}\theta = \frac{1}{2} \Rightarrow \sin (5\frac{\pi }{3} \times 2) + \cos (\frac{5}{3} \times \frac{1}{2}) = $
$\sin (3 + \frac{\pi }{3}) + \cos (\pi - \frac{\pi }{6}) = - \sin \frac{\pi }{3} - \cos \frac{\pi }{6} = - \frac{{\sqrt 3 }}{2} - \frac{{\sqrt 3 }}{2} = - \sqrt 3 $