میدانیم ${a^{ - n}} = {(\frac{1}{a})^n}$ و ${({a^n})^m} = {a^{m \times n}}$ و ${a^0} = 1$
عبارت را ساده میکنیم:
$A = {\left( {{{\left( {\frac{{{{({x^2}y)}^0}{x^{ - 6}}{y^2}{{(\frac{x}{y})}^3}}}{{{x^{ - 1}}{y^{ - 3}}{{(\frac{y}{x})}^{ - 3}}}}} \right)}^{ - 1}}} \right)^{ - 2}} = {\left( {{{\left( {\frac{{{x^{ - 6}}{y^2} \times {{(\frac{x}{y})}^3}}}{{{x^{ - 1}} \times {y^{ - 3}} \times {{(\frac{y}{x})}^3}}}} \right)}^{ - 1}}} \right)^{ - 2}}$
$ = {\left( {\frac{{{x^{ - 6}}{y^2}}}{{{x^{ - 1}}{y^{ - 3}}}}} \right)^{ + 2}} = {(\underbrace {{x^{ - 6 - ( - 1)}}}_{{x^{ - 5}}} \times \underbrace {{y^{2 - ( - 3)}}}_{{y^5}})^2} = {({x^{ - 5}} \times {y^5})^2}$
$ = {\left( {{{(\frac{1}{x})}^5} \times {y^5}} \right)^2} = {\left( {{{(\frac{y}{x})}^5}} \right)^2} = {(\frac{y}{x})^{10}}$