${{32} \over {625}}\mathop { \times ({8 \over 9})}\nolimits^{ - 3} \times \mathop {(15)}\nolimits^4 \times \mathop {({1 \over {27}})}\nolimits^3 = {{\mathop 2\nolimits^5 } \over {\mathop 5\nolimits^4 }} \times {{\mathop 3\nolimits^6 } \over {\mathop 2\nolimits^9 }} \times \mathop {(3 \times 5)}\nolimits^4 \times \mathop {({1 \over {\mathop 3\nolimits^3 }})}\nolimits^3 $
$= {1 \over {\mathop 5\nolimits^4 }} \times {{\mathop 3\nolimits^6 } \over {\mathop 2\nolimits^4 \times \mathop 3\nolimits^9 }} \times \mathop 3\nolimits^4 \times \mathop 5\nolimits^4 = {3 \over {\mathop 2\nolimits^4 }} = {3 \over {16}}$