$B = \left[ {\begin{array}{*{20}{c}}
0 \\
{ - 1}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{ - 1} \\
0
\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}
{ - 1} \\
{ - 1}
\end{array}} \right]\,\,\,,\,\,A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
1 \\
3
\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}
{ - 4} \\
{ - 2} \\
0
\end{array}} \right]$
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
1 \\
3
\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}
{ - 4} \\
{ - 2} \\
0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
{ - 1}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{ - 1} \\
0
\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}
{ - 1} \\
{ - 1}
\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}
4 \\
2 \\
0
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
{ - 3}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
5 \\
1 \\
{ - 3}
\end{array}} \right]$
$ \to \left| {AB} \right| = 4(6) - 1( - 6) + 5( - 6) = 0$