گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

سهمی به معادلهٔ $f(x)=-m{{x}^{2}}+2x+m-1$ فقط از ناحیهٔ اول و مبدأ نمی گذرد. حدود m کدام است؟

1 ) 

$m\gt 0$

2 ) 

$m\lt 0$

3 ) 

$0\lt m\lt 1$

4 ) 

هیچ مقداری برای m یافت نمی‌شود.

پاسخ تشریحی :
نمایش پاسخ

شكل تقریبی سهمی به‌صورت زیر است:
باید معادلهٔ $f(x)=0$ دو ریشهٔ منفی داشته باشد:

$\Delta \gt 0\Rightarrow 4-4(-m)(m-1) \gt 0\Rightarrow 4+4{{m}^{2}}-4m>0$

$\Rightarrow \underbrace{{{m}^{2}}-m+1\gt 0\Rightarrow }_{\Delta \lt 0}$

$\left. \begin{matrix}
p\gt 0\Rightarrow \frac{m-1}{-m}\gt 0\Rightarrow 0\lt m\lt 1  \\
S\lt 0\Rightarrow \frac{2}{m}\lt 0\Rightarrow m\lt 0  \\
\end{matrix} \right\}\to \varnothing $

تحلیل ویدئویی تست

مهدی برگی