$\underbrace {{2^{31}} + {2^{31}}}_{2 \times {2^{31}}} + {2^{32}} + {2^{33}} + {2^{34}} + ... + {2^{49}} = $
$ = 2 \times {2^{31}} + {2^{32}} + {2^{33}} + ... + {2^{49}} = \underbrace {{2^{32}} + {2^{32}}}_{2 \times {2^{33}}} + {2^{33}} + ... + {2^{49}}$
$ = 2 \times {2^{32}} + {2^{33}} + {2^{34}} + ... + {2^{49}} = \underbrace {{2^{33}} + {2^{33}}}_{2 \times {2^{34}}} + {2^{34}} + ... + {2^{49}}$
$ = 2 \times {2^{48}} + {2^{49}} = {2^{49}} + {2^{49}} = {2^{50}}$
اگر بهصورت تقریبی بهجای $({2^{10}} = 1024)$، مقدار 1000 را در نظر بگیریم، آنگاه ${2^{50}} = {({2^{10}})^5} = {(1000)^5}$ که برابر است با:
${1000^5} = {({10^3})^5} = {10^{15}} = 1,000,000,000,000,000$