گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

مجموع جواب‌های معادله مثلثاتی $\sin x + \sqrt 3 \cos x = \sqrt 2 $  در بازه $[ - \pi ,2\pi ]$ کدام است؟ 

1 ) 

$\frac{\pi }{3}$

2 ) 

$\frac{{7\pi }}{3}$

3 ) 

$\frac{{9\pi }}{4}$

4 ) 

$\frac{{11\pi }}{6}$

پاسخ تشریحی :
نمایش پاسخ

$\begin{array}{l}
\sin x + \sqrt 3 \cos x = \sqrt 2 \,\,\, \Rightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 2 }}{2}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \cos \frac{\pi }{3}\sin x + \sin \frac{\pi }{3}\cos x = \frac{{\sqrt 2 }}{2}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \sin (\frac{\pi }{3} + x) = \sin \frac{\pi }{4}
\end{array}$

$\left\{ \begin{array}{l}
\frac{\pi }{3} + x = 2k\pi  + \frac{\pi }{4}\\
\frac{\pi }{3} + x = 2k\pi  + \pi  - \frac{\pi }{4}
\end{array} \right.\,\,\,\,\,\,\, \Rightarrow \left\{ \begin{array}{l}
x = 2k\pi  + \frac{\pi }{4} - \frac{\pi }{3}\\
x = 2k\pi  + \pi  - \frac{\pi }{4} - \frac{\pi }{3}
\end{array} \right.\,\,\,\,\,\, \Rightarrow \left\{ \begin{array}{l}
x = 2k\pi  - \frac{\pi }{{12}}\\
x = 2k\pi  + \frac{{5\pi }}{{12}}
\end{array} \right.\,\,$

$x = 2k\pi  - \frac{\pi }{{12}}\,\,\,\,\,\, \Rightarrow \left\{ \begin{array}{l}
k =  \circ \,\,\,\,\, \to x =  - \frac{\pi }{{12}}\\
k = 1\,\,\,\,\,\, \to x = 2\pi  - \,\frac{\pi }{{12}}
\end{array} \right.$

$x = 2k\pi  + \frac{{5\pi }}{{12}}\,\,\,\,\,\, \Rightarrow k =  \circ \,\,\,\,\, \to x = \frac{{5\pi }}{{12}}$

$S =  - \frac{\pi }{{12}} + 2\pi  - \,\frac{\pi }{{12}} + \frac{{5\pi }}{{12}} = 2\pi  + \frac{{3\pi }}{{12}} = 2\pi  + \frac{\pi }{4} = \frac{{9\pi }}{4}$

تحلیل ویدئویی تست

سکینه باقری فرد