${{\mathop {30}\nolimits^5 \times \mathop {48}\nolimits^5 \times \mathop {25}\nolimits^3 } \over {\mathop {40}\nolimits^5 \times \mathop {36}\nolimits^2 }} = {{\mathop {(2 \times 3 \times 5)}\nolimits^5 \times \mathop {(\mathop 2\nolimits^4 \times 3)}\nolimits^5 \times \mathop {(\mathop 5\nolimits^2 )}\nolimits^3 } \over {\mathop {(\mathop 2\nolimits^3 \times 5)}\nolimits^5 \times \mathop {(\mathop 2\nolimits^2 \times \mathop 3\nolimits^2 )}\nolimits^2 }} = {{\mathop 2\nolimits^5 \times \mathop 3\nolimits^5 \times \mathop 5\nolimits^5 \times \mathop 2\nolimits^{20} \times \mathop 3\nolimits^5 \times \mathop 5\nolimits^6 } \over {\mathop 2\nolimits^{15} \times \mathop 5\nolimits^5 \times \mathop 2\nolimits^4 \times \mathop 3\nolimits^4 }} = {{\mathop 2\nolimits^{25} \times \mathop 3\nolimits^{10} \times \mathop 5\nolimits^6 } \over {\mathop 2\nolimits^{19} \times \mathop 3\nolimits^4 }} = \mathop 2\nolimits^6 \times \mathop 3\nolimits^6 \times \mathop 5\nolimits^6 = \mathop {30}\nolimits^6 $