$\operatorname{Cos}(x-\frac{3\pi }{8})=\operatorname{Cos}(\frac{3\pi }{8}-x)$
$\frac{3\pi }{8}-x$ و $x+\frac{\pi }{8}$ متمم یکدیگرند، بنابراین:
$_{\operatorname{Sin}(x+\frac{\pi }{8})+\operatorname{Cos}(\frac{3\pi }{8}-x)=1\Rightarrow \operatorname{Sin}(x+\frac{\pi }{8})+\operatorname{Sin}(x+\frac{\pi }{8})=1\Rightarrow \operatorname{Sin}(x+\frac{\pi }{8})=\frac{1}{2}=\operatorname{Sin}\frac{\pi }{6}\Rightarrow \left\{ _{x+\frac{\pi }{8}=2k\pi +(\pi -\frac{\pi }{6})}^{x+\frac{\pi }{8}=2k\pi +\frac{\pi }{6}}\Rightarrow \left\{ _{x=2k\pi +\frac{17\pi }{24}\xrightarrow{x\in \left[ 0,2\pi \right]}x=\frac{17\pi }{24}}^{x=2k\pi +\frac{\pi }{24}\xrightarrow{x\in \left[ 0,2\pi \right]}x=\frac{\pi }{24}} \right. \right.}^{\operatorname{Cos}(\frac{3\pi }{8}-x)=\operatorname{Sin}(x+\frac{\pi }{8})}$
بنابراین مجموع جوابها برابر $\frac{\pi }{24}+\frac{17\pi }{24}=\frac{18\pi }{24}=\frac{3\pi }{4}$ میباشد.