$\mathop {(0/5)}\nolimits^5 \times \mathop 8\nolimits^4 \times \mathop {32}\nolimits^3 \times \mathop 3\nolimits^{11} = \mathop {(\mathop 2\nolimits^{ - 1} )}\nolimits^5 \times \mathop {\mathop 2\nolimits^3 }\nolimits^4 \times \mathop {\mathop 2\nolimits^5 }\nolimits^3 \times \mathop 3\nolimits^{11} = \mathop 2\nolimits^{ - 5} \times \mathop 2\nolimits^{12} \times \mathop 2\nolimits^{15} \times \mathop 3\nolimits^{11} = \mathop 2\nolimits^{22} \times \mathop 3\nolimits^{11} = \mathop {(\mathop 2\nolimits^2 )}\nolimits^{11} \times \mathop 3\nolimits^{11} = \mathop {12}\nolimits^{11} $