با استفاده از رابطهٔ سرعت متوسط در حركت با شتاب ثابت داريم:
$\begin{align}
& {{v}_{av}}=\frac{\Delta x}{\Delta t}\left\{ \begin{matrix}
\frac{\Delta {{x}_{1}}=\frac{d}{6}}{{{({{v}_{av}})}_{1}}=5\frac{m}{s}}\Rightarrow 5=\frac{\frac{d}{6}}{{{t}_{1}}}\,\,\,\,(1) \\
\frac{\Delta {{x}_{2}}=\frac{5d}{6}}{{{({{v}_{av}})}_{2}}=12/5\frac{m}{s}}\Rightarrow 12/5=\frac{5\frac{d}{6}}{{{t}_{2}}}\,\,\,\,(2) \\
\end{matrix} \right. \\
& (1),(2)\Rightarrow \frac{5}{12/5}=\frac{{{t}_{2}}}{5{{t}_{1}}}\Rightarrow {{t}_{2}}=2{{t}_{1}} \\
& {{v}_{av}}=\frac{{{v}_{1}}+{{v}_{2}}}{2}\left\{ \begin{matrix}
5=\frac{{{v}_{\circ }}+{{v}_{\circ }}+a{{t}_{1}}}{2}\Rightarrow 10=2{{v}_{\circ }}+a{{t}_{1}}\,\,\,\,(3) \\
12/5=\frac{{{v}_{\circ }}+a{{t}_{1}}+{{v}_{\circ }}+a({{t}_{1}}+{{t}_{2}})}{2} \\
=\frac{{{v}_{\circ }}+a{{t}_{1}}+{{v}_{\circ }}+3a{{t}_{1}}}{2} \\
\end{matrix} \right. \\
& \Rightarrow 25=2{{v}_{\circ }}+4a{{t}_{1}}\,\,\,\,(4) \\
& (3),(4)\left\{ \begin{matrix}
a{{t}_{1}}=5\frac{m}{s} \\
{{v}_{\circ }}=2/5\frac{m}{s} \\
\xrightarrow{{{v}_{2}}={{v}_{\circ }}+3a{{t}_{1}}}{{v}_{2}}=2/5+3\times 5=17/5\frac{m}{s} \\
\end{matrix} \right. \\
\end{align}$