$\begin{align}
& A:13,14,14,14,15,15,15,16,16,18 \\
& B:13,13,14,15,15,15,15,16,16,18 \\
& {{R}_{A}}={{R}_{B}}=18-13=5 \\
& {{{\bar{x}}}_{A}}=\frac{13+14+14+14+15+15+15+16+16+18}{10}=\frac{150}{10}=15 \\
& {{{\bar{x}}}_{B}}=\frac{13+13+14+15+15+15+15+16+16+18}{10}=\frac{150}{10}=15 \\
& \sigma _{A}^{2}=\frac{{{(13-15)}^{2}}+3{{(14-15)}^{2}}+3{{(15-15)}^{2}}+2{{(16-15)}^{2}}+{{(18-15)}^{2}}}{10}=\frac{18}{10}=1/8 \\
& \sigma _{B}^{2}=\frac{2{{(13-15)}^{2}}+{{(14-15)}^{2}}+4{{(15-15)}^{2}}+2{{(16-15)}^{2}}+{{(18-15)}^{2}}}{10}=\frac{20}{10}=2 \\
\end{align}$
$\sigma _{B}^{2} \gt \sigma _{A}^{2}$ پس $A$ عملکرد بهتری داشته است.