گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

چند عدد طبیعی مثل n در رابطه $1000 \lt \sqrt {n(n + 1)}  \lt 1005$ صدق می‌کند؟

1 ) 

5

2 ) 

4

3 ) 

3

4 ) 

2

پاسخ تشریحی :
نمایش پاسخ

$1 000  \lt \sqrt {n(n + 1)}  \lt 1005$
$ \Rightarrow 100 {0^2} \lt n(n + 1) \lt 100 {5^2}$
$\Rightarrow 100 { 0 ^2} \lt {n^2} + n \lt 1000 {5^2}$
$\Rightarrow 1 00 { 0 ^2} + \frac{1}{4} \lt {n^2} + n + \frac{1}{4} \lt 1 00 {5^2} + \frac{1}{4}$
$\Rightarrow 1 00 { 0 ^2} + \frac{1}{4} \lt {(n + \frac{1}{2})^2} \lt 1 00 {5^2} + \frac{1}{4}$
$\Rightarrow \sqrt {1 00 { 0 ^2} + \frac{1}{4}}  \lt n + \frac{1}{2} \lt \sqrt {1 00 {5^2} + \frac{1}{4}} $
$\Rightarrow \sqrt {1 00 { 0 ^2} + \frac{1}{4}}  - \frac{1}{2} \lt n \lt \sqrt {1 00 {5^2} + \frac{1}{4}}  - \frac{1}{2}$

چون دنبال اعداد طبیعی هستیم لذا جواب رادیکال‌ها را به صورت زیر تخمین می‌زنیم:

$\left. \begin{gathered}
  \sqrt {1 00 { 0 ^2} + \frac{1}{4}}  - \frac{1}{2}\tilde  - 1 000  - \frac{1}{2} = 999/5 \hfill \\
  \sqrt {1 00 {5^2} + \frac{1}{4}}  - \frac{1}{2}\tilde  - 1 00 5 - \frac{1}{2} = 1 00 4/5 \hfill \\ 
\end{gathered}  \right\} \Rightarrow 999/5 \lt n \lt 1 00 4/5$

بنابراین $n = 1 000 ,1 00 1,1 00 2,1 00 3,1 00 4$ و لذا 5 عدد طبیعی با شرایط خواسته شده وجود دارد.

تحلیل ویدئویی تست

مسعود رشیدی