با استفاده از اتحاد مثلثاتی $1-\cos x=2{{\sin }^{2}}\frac{x}{2}$، داریم:
$f(x)=\frac{x}{\cos x-1}=\frac{x}{-(1-\cos x)}=\frac{x}{-2{{\sin }^{2}}\frac{x}{2}}$
$\Rightarrow \left\{ \begin{matrix} \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{x}{-2{{\sin }^{2}}\frac{x}{2}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\frac{x}{\sin \frac{x}{2}}\times \frac{1}{-2\sin \frac{x}{2}})=\frac{1}{1}\times \frac{1}{-2({{0}^{-}})}=\frac{1}{{{0}^{+}}}=+\infty \\ \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\frac{x}{-2{{\sin }^{2}}\frac{x}{2}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,(\frac{x}{\sin \frac{x}{2}}\times \frac{1}{-2\sin \frac{x}{2}})=\frac{1}{\frac{1}{2}}\times \frac{1}{-2({{0}^{+}})}=\frac{1}{{{0}^{-}}}=-\infty \\ \end{matrix} \right.$