با استفاده از رابطهٔ طول ثانویهٔ یک جسم در اثر تغییر دما و با توجه به دادههای مسأله داریم:
$\left\{ \begin{matrix}
{{l}_{Fe}}={{l}_{0}}_{Fe}(1+{{\alpha }_{Fe}}\Delta \theta )={{l}_{0}}_{Fe}(1+1/2\times {{10}^{-3}}) \\
\Rightarrow {{l}_{Fe}}={{l}_{0}}_{Fe}+1/2\times {{10}^{-3}}{{l}_{0}}_{Fe}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
{{l}_{Cu}}={{l}_{0}}_{Cu}(1+{{\alpha }_{Cu}}\Delta \theta )={{l}_{0}}_{Cu}(1+1/8\times {{10}^{-3}}) \\
\Rightarrow {{l}_{Cu}}={{l}_{0}}Cu+1/8\times {{10}^{-3}}{{l}_{0}}Cu\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\end{matrix} \right.$
با كمكردن طرفين رابطهها از هم داريم:
${{l}_{Cu}}-{{l}_{Fe}}={{l}_{0}}_{Cu}-{{l}_{0}}_{Fe}+(1/8{{l}_{0Cu}}-1/2{{l}_{0Fe}})\times {{10}^{-3}}$
$\xrightarrow[{{l}_{Cu}}-{{l}_{Fe}}=0/5mm]{{{l}_{0}}_{Cu}-{{l}_{0Fe}}=-1mm\,\,\,\,(1)}$
$0/5=-1+(1/8{{l}_{0Cu}}-1/2{{l}_{0Fe}})\times {{10}^{-3}}\,\,\,\,\,(2)$
$\xrightarrow{(2),(1)}\left\{ \begin{matrix}
1/8{{l}_{0Cu}}-1/2{{l}_{0Fe}}=1/5\times {{10}^{3}} \\
{{l}_{0Cu}}={{l}_{0Fe}}-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\end{matrix} \right.$
$\to \left\{ \begin{matrix}
{{l}_{0}}_{Fe}=2503mm=2/503m \\
{{l}_{0Cu}}=2502mm=2/502m \\
\end{matrix} \right.$