${{a}_{1}}=A,{{a}_{2}}={{a}_{1}}+\frac{1}{20}A,{{a}_{3}}={{a}_{2}}+\frac{1}{20}A,...{{a}_{n}}={{a}_{n-1}}+\frac{1}{20}A$
${{S}_{n}}=63000,{{a}_{n}}=2A$
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\Rightarrow 2A=A+\left( n-1 \right)\frac{1}{20}A\Rightarrow A=\left( n-1 \right)\frac{1}{20}A$
$\Rightarrow 1=\left( n-1 \right)\frac{1}{20}\Rightarrow 20=n-1\Rightarrow n=21$
${{S}_{n}}=\frac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\Rightarrow 63000=\frac{21}{2}\left( A+2A \right)\Rightarrow 63000=\frac{63A}{2}\Rightarrow A=2000$