میدانیم:
$\left\{ \begin{matrix} \operatorname{sina}\operatorname{sinb}=-\frac{1}{2}\left( \cos \left( a+b \right)-\cos \left( a-b \right) \right) \\ \operatorname{sina}\operatorname{sinb}=\frac{1}{2}\left( \cos \left( a+b \right)+\cos \left( a-b \right) \right) \\ \end{matrix} \right.$
بنابراین:
$\sin 4x\sin 2x=\cos 3x\operatorname{cosx}\Rightarrow -\frac{1}{2}\left( \cos 6x-\cos 2x \right)=\frac{1}{2}\left( \cos 4x+\cos 2x \right)$
$\Rightarrow -\cos 6x+\cos 2x=\cos 4x+\cos 2x\Rightarrow \cos 6x+\cos 4x=0$
از طرفی:
$\operatorname{cosa}+\operatorname{cosB}=2\cos \frac{a+B}{2}\cos \frac{a-B}{2}$
لذا:
$\cos 6x+\cos 4x=0\Rightarrow 2\cos 5x\operatorname{cosx}=0$
$\left\{ \begin{matrix} \cos 5x=0\Rightarrow 5x=k\pi +\frac{\pi }{2}\Rightarrow x=\frac{k\pi }{5}+\frac{\pi }{10},k\in z \\ \operatorname{cosx}=0\Rightarrow x=k\pi +\frac{\pi }{2},k\in z \\ \end{matrix} \right.$
$\xrightarrow{x\in \left| 0,\pi \right|}x\in \left[ \frac{\pi }{2},\frac{\pi }{10},\frac{\pi }{5}+\frac{\pi }{10},\frac{3\pi }{5}+\frac{\pi }{10},\frac{4\pi }{5}+\frac{\pi }{10} \right]$
یعنی پنج جواب متمایز در این بازه داریم.