$1-3{{\sin }^{4}}\alpha =3{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha $
$\Rightarrow 1=3{{\sin }^{4}}\alpha +3{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha $
$\Rightarrow 1=3{{\sin }^{2}}\alpha ({{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha )\Rightarrow {{\sin }^{2}}\alpha =\frac{1}{3}$
$\Rightarrow \frac{1}{{{\sin }^{2}}\alpha }=3\Rightarrow 1+{{\cot }^{2}}\alpha =3\Rightarrow {{\cot }^{2}}\alpha =2\Rightarrow {{\tan }^{2}}\alpha =\frac{1}{2}$
$\to \tan \alpha =\frac{-\sqrt{2}}{2}$
$\cot (\frac{9\pi }{2}+\alpha )=\cot (4\pi +\frac{\pi }{2}+\alpha )=\cot (\frac{\pi }{2}+\alpha )=-\tan \alpha $
$\Rightarrow \cot (\frac{9\pi }{2}+\alpha )=\frac{\sqrt{2}}{2}$