دو نقطه $\left[ \begin{matrix}
0 \\
2 \\
\end{matrix} \right]$ و $\left[ \begin{matrix}
1 \\
6 \\
\end{matrix} \right]$ روی شکل مشخص شده است.
اگر نقطه $\left[ \begin{matrix}
0 \\
2 \\
\end{matrix} \right]$ را در نظر بگیریم:
$\xrightarrow[y=f\left( x \right)=2]{x=0}f\left( x \right)=a{{b}^{x}}\Rightarrow 2=a{{b}^{0}}\Rightarrow a=2$
اگر $\left[ \begin{matrix}
1 \\
6 \\
\end{matrix} \right]$ را در نظر بگیریم:
$\xrightarrow[y=f\left( x \right)=2]{\overset{x=1}{\mathop{y=f\left( x \right)=6}}\,}f\left( x \right)=a{{b}^{x}}\Rightarrow 6=2\times {{b}^{1}}\Rightarrow 6=2b\Rightarrow b=\frac{6}{2}=3\Rightarrow b=3$
بنابراین تابع به صورت $f\left( x \right)=a{{b}^{x}}=2\times {{3}^{x}}$ تعریف میشود.