گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

میتونی لایو بذاری!

مطابق شكل، الكترونی از مجاورت صفحهٔ با بار منفی خازنی رها می‌شود و با تندی ${{10}^{6}}\frac{m}{s}$ به صفحه مقابل آن می‌رسد. اگر ظرفيت خازن $16\mu F$ باشد، بار الكتريكی ذخيره شده در اين خازن چند ميكروكولن است؟ (بار و جرم الكترون به‌ترتيب $1/6\times {{10}^{-19}}C$ و $9/1\times {{10}^{-31}}kg$ در نظر گرفته شود و از نيروی وزن وارد بر الكترون صرف‌نظر شود.)

1 ) 

$1/6\times {{10}^{-15}}C$

2 ) 

$4\sqrt{91}$

3 ) 

91

4 ) 

45/5

پاسخ تشریحی :
نمایش پاسخ

ابتدا از طريق روابط زير، ولتاژ دو سر خازن را به‌دست می‌آوريم. 

${{W}_{t}}=\Delta K={{K}_{2}}-{{K}_{1}}=\frac{1}{2}mv_{1}^{2}$

$=\frac{1}{2}\times 9/1\times {{10}^{-31}}\times {{({{10}^{6}})}^{2}}-0=\frac{91}{2}\times {{10}^{-20}}(J)$

${{W}_{t}}={{W}_{E}}=-\Delta U$

$\Rightarrow \Delta U=-\Delta K\Rightarrow \Delta U=-\frac{91}{2}\times {{10}^{-20}}(J)$

$\Delta V=\frac{\Delta U}{q}\Rightarrow \Delta V=\frac{-\frac{91}{2}\times {{10}^{-20}}}{-1/6\times {{10}^{-19}}}=\frac{91}{32}(V)$

حال با استفاده از رابطه زير، بار الكتريكی ذخيره شده در خازن $(Q)$ به دست می‌آيد.

$Q=CV\Rightarrow Q=16\times \frac{91}{32}=\frac{91}{2}=45/5\mu C$

تحلیل ویدئویی تست

وحید مشکی نژاد