${A^2} = \left[ {\begin{array}{*{20}{c}}
0 \\
2
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
4 \\
1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
2
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
4 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
8 \\
2
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
4 \\
9
\end{array}} \right]$
$\left. \begin{gathered}
{A^2} = \left[ {\begin{array}{*{20}{c}}
0 \\
2
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
4 \\
1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
2
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
4 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
8 \\
2
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
4 \\
9
\end{array}} \right] \hfill \\
mA + nI = \left[ {\begin{array}{*{20}{c}}
0 \\
{2m}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{4m} \\
m
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
n \\
0
\end{array}\,\,\,\begin{array}{*{20}{c}}
0 \\
n
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
n \\
{2m}
\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}
{4m} \\
{m + n}
\end{array}} \right] \hfill \\
\end{gathered} \right\} \Rightarrow n = 8\,\,\,,\,\,\,m = 1$