مورب $DE,AB\left\| {DC \Rightarrow {{\hat D}_2} = {{\hat E}_1}} \right.$
مثلث AED متساویالساقین است. پس:
${\hat D_1} = {\hat E_1}$
$\mathop {AED}\limits^\Delta :\hat A + {\hat E_1} + {\hat D_1} = {180^ \circ }\xrightarrow[{{{\hat E}_1} = {{\hat D}_1}}]{{\hat A = 2x}}2x + {\hat E_1} + {\hat E_1} = {180^ \circ }$
$ \Rightarrow 2{\hat E_1} = {180^ \circ } - 2x \Rightarrow {\hat E_1} = \frac{{{{180}^ \circ } - 2x}}{2} \Rightarrow {\hat E_1} = {90^ \circ } - x$
چهارضلعی AECD یک ذوزنقهٔ متساویالساقین است. پس: ${\hat C_2} = \hat D$
در این چهارضلعی داریم:
$\hat A + ({\hat E_1} + {72^ \circ }) + {\hat C_2} + \hat D = {360^ \circ }$
$\xrightarrow{{{{\hat C}_2} = \hat D}}2x + {\hat E_1} + {72^ \circ } + 2\hat D = {360^ \circ }$
$ \Rightarrow 2x + {\hat E_1} + 2\hat D = {360^ \circ } - {72^ \circ }$
$\xrightarrow{{\hat D = {{180}^ \circ } - \hat A}}2x + {\hat E_1} + 2({180^ \circ } - \hat A) = {288^ \circ }$
$ \Rightarrow 2x + {\hat E_1} + 2({180^ \circ } - 2x) = {288^ \circ }$
$ \Rightarrow 2x + {\hat E_1} + {360^ \circ } - 4x = {288^ \circ }$
${\hat E_1} - 2x = {288^ \circ } - {360^ \circ } = - 72$
$\xrightarrow{{{{\hat E}_1} = {{90}^ \circ } - x}}{90^ \circ } - x - 2x = - 72 \Rightarrow - 3x = - 72 - 90 = - 162$
$ \Rightarrow x = \frac{{ - 162}}{{ - 3}} = {54^ \circ }$