تابع $f(x)=\left| x-1 \right|+\left| x+3 \right|$ در بازهٔ $[a,b]$ یک به یک بوده و $b-a$ حداکثر مقدار ممکن است. ضابطهٔ وارون آن در این بازه کدام است؟
${{f}^{-1}}(x)=-\frac{x}{2}-1;-4\le x\le 4$
2 )
${{f}^{-1}}(x)=-\frac{x}{2}-1;-3\le x\le 1$
3 )
${{f}^{-1}}(x)=\frac{x}{2}-1;-4\le x\le 4$
4 )
${{f}^{-1}}(x)=\frac{x}{2}-1;-3\le x\le 1$
پاسخ تشریحی :
تحلیل ویدئویی تست
تحلیل ویدئویی برای این تست ثبت نشده است!