$R=\rho \frac{L}{A}\xrightarrow{{{\rho }_{A}}={{\rho }_{B}},{{L}_{A}}={{L}_{B}}}\frac{{{R}_{B}}}{{{R}_{A}}}=\frac{{{A}_{A}}}{{{A}_{B}}}$
${{A}_{A}}=\pi {{r}^{2}}\Rightarrow {{A}_{A}}=\pi {{(3\times {{10}^{-3}})}^{2}}=9\pi \times {{10}^{-6}}{{m}^{2}}$
${{A}_{B}}=\pi ({{r}_{i}}^{2}-{{r}_{i}}^{2})\Rightarrow {{A}_{B}}=\pi (9\times {{10}^{-6}}-4\times {{10}^{-6}})$
$\Rightarrow {{A}_{B}}=5\pi \times {{10}^{-6}}{{m}^{2}}$
$\frac{{{R}_{B}}}{{{R}_{A}}}=\frac{{{A}_{A}}}{{{A}_{B}}}\Rightarrow \frac{{{R}_{B}}}{{{R}_{A}}}=\frac{9\pi \times {{10}^{-6}}}{5\pi \times {{10}^{-6}}}=\frac{9}{5}$